Ford Motor Company Tests Electric Vehicle Batteries By Going Wireless!!

Ford Motor Company is using Internet and wireless technologies to test advanced lithium-ion battery systems to power their plug-in hybrid electric vehicles and electric vehicles.

“Remote monitoring allows us to access real-time data and make continuous improvements very quickly,” said Sherif Marakby, Ford director, Electrification Program and Engineering. “This degree of efficiency would have been unthinkable a few years ago and will help Ford bring more fuel-efficient, low-emission vehicles to market more quickly than ever before.”

As I have mentioned in previous stories, Ford Motor Company is working to launch two plug-in hybrid electric vehicles in North America and Europe.

Ford Motor Company electric vehicle batteries

Ford’s future hybrid and electric vehicles will use new lithium-ion battery systems that offer about twice the energy content of the nickel-metal-hydride systems used today, and take up less space inside the vehicle. Although lithium-ion batteries are widely used in the consumer electronics industry, the larger systems to be used in vehicles are designed to manage greater electrical loads under harsher conditions. Only through rigorous testing can the new systems be properly calibrated.

Ford’s battery researchers are focusing on lithium-ion technology’s ability to recharge under a range of conditions including state of charge (from empty to full), battery age (from new to old) and environmental temperatures (from freezing cold to scorching hot).

Understanding how lithium-ion’s material properties perform under a variety of conditions is a critical step toward determining system control algorithms that will allow quick, efficient recharging while minimizing cell deterioration to maximize battery life.

“So far, we’ve been impressed by our system’s exceptionally low internal resistance, which means the battery charges very quickly and efficiently,” said Ted Miller, manager, Advanced Energy Storage Technology. “As we continue our testing, we will be able to calculate the system’s optimal recharge rate while maximizing battery life.”

The data we’ve collected have helped us understand how lithium-ion battery cells behave under various temperatures and states of charge,” said Jas Dhillon, global electric vehicle fleet manager. “And the monitoring system allows us to make software updates to the fleet vehicles while they recharge. What used to be logistically complicated and time consuming can be accomplished now with a click of a mouse.”

%d bloggers like this: